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Abstract

The p-value has dominated research in education and related fields and a statistically non-significant p-value is quite commonly
interpreted as ‘confirming’ the null hypothesis (H0) of ‘equivalence’. This is unfortunate, because p-values are not fit for that
purpose. This paper discusses three alternatives to the traditional p-value that unfortunately have remained underused but can
provide evidence in favor of ‘equivalence’ relative to ‘non-equivalence’: two one-sided tests (TOST) equivalence testing, Bayesian
hypothesis testing, and information criteria. TOST equivalence testing and p-values both rely on concepts of statistical significance
testing and can both be done with confidence intervals, but treat H0 and the alternative hypothesis (H1) differently. Bayesian
hypothesis testing and the Bayesian credible interval aka posterior interval provide Bayesian alternatives to traditional p-values,
TOST equivalence testing, and confidence intervals. However, under conditions outlined in this paper, confidence intervals and
posterior intervals may yield very similar interval estimates. Moreover, Bayesian hypothesis testing and information criteria
provide fairly easy to use alternatives to statistical significance testing when multiple competing models can be compared. Based
on these considerations, this paper outlines a pragmatic approach to statistical testing and estimation (PASTE) for research in
education and related fields. In a nutshell, PASTE states that all of the alternatives to p-values discussed in this paper are better
than p-values, that confidence intervals and posterior intervals may both provide useful interval estimates, and that Bayesian
hypothesis testing and information criteria should be used when the comparison of multiple models is concerned.
& 2018 King Saud bin Abdulaziz University for Health Sciences. Production and Hosting by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The p-value has dominated research in education and
related fields and a statistically non-significant p-value is
quite commonly interpreted as ‘confirming’ the null
hypothesis (H0) of ‘equivalence’. Given the critiques on
the latter practice and on statistical significance testing in
a broader sense,1–14 the persisting dominance of p-values

and misuse such as in confirming a H0 is quite
remarkable. Where does the p-value actually come from
and what does it actually mean?

1.1. Three distributions

In statistical significance testing, three distributions
need to be considered. Firstly, there is the population
distribution of the variable of interest, for instance
mental effort needed to learn a particular topic, with an
average or mean effort and standard deviation around
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that mean. These population values are also called
parameters and are – at least at a given time – assumed
to have fixed values which are usually unknown.
Secondly, once we draw a sample from that population,
we obtain a distribution of the sample with a mean and
standard deviation that are probably somewhat different
from the population mean and standard deviation. The
latter are also referred to as statistics. Thirdly, under
the assumption that samples are drawn randomly, the
sampling distribution is the probability distribution of a
statistic of interest – in practice often a sample mean, a
mean difference or a correlation – across all possible
samples of the same size drawn from the same
population. For statistical tests on means, mean
differences and similar statistics this distribution is
commonly assumed to be Normal (i.e., bell-shaped) or
at least approximately Normal. Whenever the variables
of interest follow a Normal distribution in the popula-
tion, the sampling distribution also follows a Normal
distribution. However, when these variables do not
follow a Normal distribution in the population, the
sampling distribution will gradually approach a Normal
distribution with increasing sample size. Although
samples of sizes like N ¼ 40 will in practice often be
sufficient to guarantee an approximately Normal sam-
pling distribution, the assumption of an approximately
Normal sampling distribution may be problematic when
samples are of much smaller sizes such as N ¼ 10.
Unfortunately, samples of this size are not uncommon in
some areas of educational and psychological research.

Even if an approximately Normal sampling distribu-
tion can be assumed, smaller samples are problematic
for other reasons including the following. Firstly, given
that many differences of interest in fields like education
and psychology are of a somewhat smaller magnitude
or of ‘medium’ size (e.g., half a standard deviation or
Cohen's d ¼ 0.5)15 at best, researchers who perform
statistical significance tests on the difference in means
between two samples of sizes of 10–20 are generally
poorly equipped to detect such differences of interest.16

Secondly, although that limited statistical power to
detect differences of interest not rarely stimulates an
expectation that a statistically significant p-value must
reflect a real effect, it is easily demonstrated that in a
pile of statistically significant outcomes more false
alarms can be expected in smaller than in larger
samples.17 Thirdly, the smaller the sample sizes, the
more findings can be expected to vary from one random
sample to the next.18 Many researchers appear to
underappreciate that variability and speak of ‘failed’
replications when a statistically significant outcome
from an initial study cannot be replicated in a direct

replication of that study. Replicating a study does not
imply that the findings of the initial study will be
replicated, and when dealing with small samples
findings may vary wildly from one study to the next
even if in the population we sample from the
phenomenon of interest (e.g., mean, mean difference
or correlation) remains the same over time.

Under the aforementioned assumptions of fixed
population parameters, random samples and usually at
least approximately Normal sampling distributions, the
standard error is the standard deviation of the sampling
distribution that can be used to calculate p-values and
confidence intervals (CIs). The p-value is the prob-
ability of finding the difference, relation or effect
observed in the sample or further away from H0,
assumed that H0 is true. If the p-value is very small, it is
reasoned that a result (i.e., difference, relation or effect)
at least as extreme as observed in the sample is very
unlikely under H0 but probably more likely under an
alternative hypothesis H1 that states that there is a
difference, relation or effect in the population of
interest. Both p-values and CIs can indicate whether
at statistical significance level α we can reject H0. For
example, a 95% CI not including the population value
or difference specified under H0 corresponds with p
being smaller than α ¼ 0.05 in a default two-sided test
(i.e., extreme deviations from H0 in both negative and
positive direction can result in H0 being rejected).
Moreover, CIs are widely used to provide interval
estimations around means and other statistics. How-
ever, it is important to note that in this approach to
statistical testing and estimation, all inference is about
what would happen across all possible samples of the
same size drawn from the same population. Given fixed
population parameters and random samples, a 95% CI
will include the population parameter of interest in 95%
of all possible samples of the same size drawn from that
same population.

1.2. Equivalence testing

Given the very definition of the p-value, it cannot
provide evidence in favor of a H0.

11,16 Hence, if H0 is
defined in terms of ‘equivalence’, a statistically non-
significant p-value cannot be used to confirm equiva-
lence. However, in an alternative to this traditional H0

significance testing approach, two one-sided tests
(TOST) equivalence testing,19–21 this problem is cir-
cumvented by treating H0 and H1 differently. For
instance, we may agree that differences between a
treatment and control condition smaller than 0.3 standard
deviations (i.e., d o 0.3) are too small to really matter
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for educational or psychological practice in a given
context. In the traditional approach, the p-value is an
outcome with regard to H0: d ¼ 0, and a statistically
significant p-value results in that H0 being rejected
thinking that the difference observed or more extreme is
more likely under H1: d≠0. In TOST equivalence testing,
two H0s are tested: H0.1: d o −0.3 (i.e., more negative
than d ¼ −0.3) and H0.2: d 4 0.3 (i.e., more positive
than d ¼ 0.3). In other words, contrary to the traditional
approach, the H0s in TOST equivalence testing are about
differences in a certain range, and if and only if both H0.1

and H0.2 can be rejected we have evidence for (relative)
equivalence. That is, the rejection of both these H0s does
not imply that H0: d ¼ 0 is true, but it does provide
evidence for the hypothesis that differences are in a
‘zero-to-small’ range representing little if any practical
meaning. In terms of CIs, if both H0.1 (lower bound: d
o −0.3) and H0.2 (upper bound: d 4 0.3) are rejected at
α ¼ 0.05, a 90% CI around the statistic of interest (here:
d observed in the sample) will not include any of the
values under H0.1 and H0.2; whenever it includes a value
(under H0.1 and/or H0.2) the statistical significance test
associated with that value (i.e., H0.1 and/or H0.2) will not
be statistically significant and hence we have no
evidence for (relative) equivalence.

In other words, while we can still use the CIs that we
should report when using traditional p-values, by testing
two H0s which represent meaningful differences, TOST
equivalence testing enables us to avoid a fallacy
associated with traditional p-values: to interpret parti-
cular testing outcomes as evidence in favor of (relative)
equivalence. However, TOST equivalence testing is not
the only alternative to the traditional p-value.

1.3. From before to after seeing the data

In another alternative, the Bayesian approach, un-
certainty with regard to population parameters of interest
is expressed in a probability distribution that is updated
when data comes in. For example, before seeing any data,
we may not know anything with regard to a correlation of
interest, and that will translate in a probability distribution
before seeing the data (i.e., prior distribution) that
indicates that any correlation may be equally likely (i.e.,
a Uniform prior distribution).13 Observing a substantial
correlation (e.g., r ¼ 0.4) in a sample of N ¼ 30
participants will result in a peaked probability distribution
after seeing the data (i.e., posterior distribution) with a
95% posterior interval (PI) aka credible interval around
r ¼ 0.4, and the value ‘0’ (i.e., the traditional H0 in
statistical significance testing) will be less likely than
before seeing the data. However, observing a smaller

correlation (e.g., r ¼ 0.1) in that sample would result in
a peaked posterior distribution with a 95% PI around
r ¼ 0.1, and r ¼ 0 would be more likely than it was
before seeing the data. Finally, keeping other factors
constant, in small samples (e.g., N ¼ 10), the posterior
distribution will be less peaked than in a large sample
(e.g., N ¼ 100); a small sample has less weight (i.e.,
provides less information) than a large sample.

The shift in likelihood of a H0 vs. a H1 from before to
after seeing the data can be expressed in a so-called
Bayes factor (BF).13,16 When formulated as H0 vs. H1

(BF01), values 4 1 indicate that after seeing the data
H0 has become more likely than before seeing the data,
whereas when formulated as H1 vs. H0 (BF10), values
4 1 indicate that after seeing the data H0 has become
less likely than before seeing the data (i.e., BF10 ¼
1/BF01). The more a BF is away from 1, the more
evidence for one hypothesis vs. the other, and a value of
1 indicates that seeing the data has not resulted in a shift
in likelihood of one hypothesis vs. the other. In the
aforementioned case of observing r ¼ 0.4, BF10 will
be greater than 1, whereas in the case of observing
r ¼ 0.1, BF01 will be greater than 1.

Although in former times a common critique to
Bayesian hypothesis testing and PIs was that specifying
a prior distribution (i.e., before seeing the data) may be
highly subjective, the influence of the prior on the PI
decreases as more data comes in (i.e., with increasing
sample size). Moreover, for an increasing variety of
statistical models so-called ‘default Priors’ (i.e., that take
into account the mathematical properties of different types
of variables and their probability distributions but
effectively assume little or no prior knowledge about
the population parameter of interest) have been proposed
and used22–25 and are available in free-of-charge (i.e.,
non-commercial) software packages.26–28 With regard to
the interpretation in terms of evidence, BFs can then be
interpreted as follows: 1–3.2: anecdotal evidence, not
worth more than a bare mention; 3.2–10: substantial
evidence; 10–32: strong evidence; 32–100: very strong
evidence; 100þ : ‘decisive’.29 Hence, BF10 ¼ 5.29
indicates substantial evidence in favor of H1 vs. H0,
whereas BF10 ¼ 0.05 corresponds with BF01 ¼ 1/0.05
¼ 20 and indicates strong evidence in favor H0 vs. H1.

1.4. Several competing models

In many practical situations, not two but several
hypotheses or combinations of hypotheses may com-
pete. For instance, consider a randomized controlled
experiment in which students are randomly allocated to
four cells of a 2 (factor A) × 2 (factor B) factorial
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design. They study during a certain period of time
following the format outlined in their respective
conditions and subsequently complete a posttest for
the researchers to compare the conditions in terms of
posttest performance. Given a 2 × 2 factorial design, we
can distinguish three effects: a main effect of factor A, a
main effect of factor B, and an A-by-B interaction
effect (i.e., a combined effect of A and B). This results
in five possible models: (1) a model with main effect A
only, (2) a model with main effect B only, (3) a model
with both main effects; (4) a model with both main
effects and the interaction effect; and (5) a model
without any of the aforementioned terms (i.e., none of
the effects mattering). The same holds for a study
where the interest lies in group differences (i.e., the one
and only factor under study) in terms of a response
variable of interest but there is a third variable, a
covariate: if in the previous we replace ‘main effect B’
by ‘effect of covariate’, we have our five models that
can be compared. Bayesian hypothesis testing provides
a very straightforward and transparent approach to
comparing these models. A priori, all models may be
equally likely. However, after seeing the data, some
models will be more likely than others. Bayes factors
can be calculated and compared across models to
facilitate decision-making which model we may prefer
now that we have seen the data.

A somewhat similar approach to comparing multiple
models is found in so-called information criteria.30–36

Although a full discussion on the wide variety of
information criteria available, which ones should be
used for which kind of analyses and how they relate to
the other approaches already discussed would require at
least one full article in itself, succinctly put the logic
underlying information criteria is to help researchers
determine which of the models under comparison best
captures the information in the data. The different
criteria differ in their trade-off between model fit on the
one hand and model complexity and sample size on the
other hand. Three criteria that are widely available and
will be used in this paper are Akaike's information
criterion (AIC),32 Schwarz’ Bayesian information
criterion (BIC)35 and the sample-size adjusted BIC.37–
39 Although a full analysis of these criteria and their
possible uses is beyond the scope of this paper, in short
smaller values indicate better models.

1.5. The current study: a comparison of traditional
p-values and alternatives

In a nutshell, from Sections 1.1–1.4. it becomes clear
that several alternatives to traditional p-values exist and

enable researchers to do things that cannot be done with
traditional p-values. TOST equivalence testing, Baye-
sian hypothesis testing, and information criteria provide
three alternatives that in their own way enable
researchers to obtain evidence in favor of a ‘no
(meaningful) difference’ H0 relative to a ‘(meaningful)
difference’ H1. In the case of a simple two-group
comparison (e.g., a two-samples t-test or one-way
analysis of variance),40 TOST equivalence testing and
Bayesian hypothesis testing provide easy alternatives to
traditional p-values to obtain evidence in favor of
(relative) equivalence. In the case of more complex
models, Bayesian hypothesis testing and information
criteria – and to some also TOST equivalence testing –
provide researchers with tools to determine whether or
not to include a particular term in a model without
having to rely on traditional p-values. For example, the
assumption of non-interaction underlying analysis of
covariance (ANCOVA)41 has commonly been tested
using traditional p-values. A statistically non-significant
p-value then results in dropping the interaction term
from the model, as if it does not matter. Instead, TOST
could be applied by inspecting the 90% CI for an effect
size such as standardized β and check for overlap with
the lower or upper bound (e.g., β o −0.1 and β 4
0.1 and or perhaps β o −0.15 and β 4 0.15). In the
case of no overlap, we would drop the interaction term
from the model. Also, Bayes factors or information
criteria can be calculated to see if a model with
interaction term or one of the models without interac-
tion term should be preferred.

The remainder of this paper focuses on a simulated
practical example in the form of a study in which two
groups of learners are asked about the previous
experience with a topic to be studied, then each study
that topic in a different way, and finally complete a
posttest on the topic studied. The main interest lies in
group differences in average posttest performance
followed by group differences in average previous
experience followed by the relation between posttest
performance and previous experience and finally the
combined use of the grouping variable and previous
experience as predictors of posttest performance.
Traditional p-values and all alternatives discussed in
this paper are compared. Based on the analysis thus far
and the comparison in the following sections, this paper
outlines a pragmatic approach to statistical testing and
estimation (PASTE) for research in education and
related fields. Concisely put, PASTE states that all of
the alternatives to p-values discussed in this paper are
better than p-values, that CIs and PIs may both provide
useful interval estimates, and that Bayesian hypothesis
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testing and information criteria should be used when the
comparison of multiple models is concerned. PASTE is
a pragmatic approach because it does not reject one
approach or another for reasons of philosophy, world-
view or definition of probability, but considers different
approaches as having the potential to help researchers
study questions of interest from somewhat different
perspectives. PASTE is an approach to testing and
estimation, because both testing and estimation are
considered useful in helping researchers to make
decisions with regard to questions of interest.

2. Method

2.1. Participants and design

In this study, two groups of n ¼ 100 learners each
(i.e., total N ¼ 200) are asked about the previous
experience with a topic to be studied, then each study
that topic in a different way, and finally complete a
posttest on the topic studied. The reader may wonder
why such large numbers if they are not common for
much of educational and psychological research. With
two groups of n ¼ 100 each and testing at α ¼ 0.05,
our traditional two-samples t-test has a statistical power
of 0.8 or 80% for d ¼ 0.4.42 To achieve that statistical
power when testing at α ¼ 0.05 and assuming d ¼ 0.5,
we would need n ¼ 64 per group. Using two groups
of n ¼ 100 each, testing at α ¼ 0.05 and assuming
d ¼ 0.3, we have a statistical power of around 0.56.

2.2. Materials and procedure

Both groups of learners are asked to self-report their
previous experience with the topic that will be studied
on a visual analog scale (VAS) ranging from 0
(minimum) to 100 (maximum). Next, they study the
topic in their own way – as they are used to do (i.e., no
random allocation to condition) – and complete a
posttest on the topic studied that yields a score ranging
from 0 (minimum) to 100 (maximum).

2.3. Statistical analysis

As the main research question is whether the two
groups differ in terms of posttest performance, a two-
samples t-test40 along with a TOST equivalence
testing21 and Bayesian26 alternative will be performed
for posttest performance. As the second research
question is whether the two groups differ in terms of
previous experience (i.e., this is not a randomized
controlled experiment), the same will be done for

previous experience. Next, as the third research
question is on the relation between posttest perfor-
mance and previous experience, a traditional test on the
Pearson's correlation between posttest performance and
previous experience40 along with a TOST equivalence
testing21 and Bayesian26 alternative will be performed.
Finally, to examine the combined use of the grouping
variable and previous experience as predictors of
posttest performance, we compare five models using
Bayes factors, AIC, BIC, and (sample-size) adjusted
BIC similar to the previously discussed two-way
factorial example: (1) only the groups; (2) only
previous experience; (3) groups and previous experi-
ence (i.e., ANCOVA);41 (4), groups, previous experi-
ence, and their interaction; and (5) a model without any
of the aforementioned terms (i.e., as if none matter).

For all analyses and models, descriptive statistics as
well as traditional significance testing and Bayesian
hypothesis testing were done with JASP 0.8.4,26

information criteria were calculated in Mplus 8,38

TOST equivalence testing was performed with JAMO-
VI 0.8.1.5,28 and the graphs (i.e., Figs. 1 and 2) come
from SPSS 25.43

3. Results

Fig. 1 graphically depicts the univariate distributions
(i.e., histograms and boxplots) of posttest score and
self-reported previous experience for each of the two
groups.

Fig. 2 demonstrates the bivariate distribution (i.e.,
scatterplot) of posttest score and self-reported previous
experience with separate icons for members of the two
groups (i.e., squares for learners from group A,
triangles for learners from group B).

Table 1 presents means and standard deviations along
with skewness and kurtosis for posttest score (0-100) and
previous experience (0-100) for each group.

3.1. Research question 1: group difference in posttest
performance

Table 2 presents the outcomes of traditional
significance testing, TOST equivalence testing, and
Bayesian hypothesis testing for posttest performance
and previous experience.

In terms of standard deviations, the difference
between groups A and B in average posttest perfor-
mance is small: d ¼ 0.142. The 95% CI extends from
−0.135 to 0.420 and thus includes H0: d ¼ 0, hence the
result is not statistically significant at α ¼ 0.05: p ¼
0.315. However, the 90% CI (from −0.091 to 0.375)
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and logically p-values obtained from TOST equiva-
lence testing indicate that we have insufficient evidence
to assume (relative) equivalence either: although we
can reject H0.1: d o −0.3 (p ¼ 0.001), we fail to reject
H0.2: d 4 0.3 (p ¼ 0.133).

Bayesian hypothesis testing yields BF10 ¼ 0.247,
which corresponds with BF01 ¼ 1/0.247E4.049. In
other words, from Bayesian hypothesis testing, we
conclude ‘substantial evidence’ in favor of H0 vs. H1.
The 95% PI extends from −0.132 to 0.398 and is thus
quite similar to the 95% CI. This is quite normal; even
when Cauchy not Uniform priors are used, 95% PIs and
95% CIs for mean differences tend to become more
similar with increasing sample size.

3.2. Research question 2: group difference in previous
experience

In terms of standard deviations, the difference
between groups A and B in average previous
experience is close to zero: d ¼ −0.017. The 95%
CI extends from −0.294 to 0.260 and thus includes H0:
d ¼ 0, hence the result is not statistically significant at
α ¼ 0.05: p ¼ 0.904. In this case, the 90% CI (from
−0.250 to 0.216) includes neither the lower nor upper
bound value used in TOST equivalence testing, and
hence both H0.1: d o −0.3 (p ¼ 0.023) and H0.2: d 4
0.3 (p ¼ 0.013) can be rejected. In other words, for
previous experience, we appear to have sufficient

Fig. 1. Histograms and boxplots of posttest score (0–100) and experience (0–100) per group. Software: SPSS 25.
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evidence to assume (relative) equivalence (i.e., −0.3
o d o 0.3).

Bayesian hypothesis testing yields BF10 ¼ 0.155,
which corresponds with BF01 ¼ 1/0.155E6.452. In
other words, from Bayesian hypothesis testing, we
conclude ‘substantial evidence’ in favor of H0 vs. H1.
The 95% PI extends from −0.279 to 0.251 and is thus
quite similar to the 95% CI.

3.3. Research question 3: the relation between
previous experience and posttest performance

Table 3 presents testing and estimation outcomes
with regard to the correlation between posttest score
and experience.

The observed correlation is r ¼ 0.332, and the 95%
CI ranges from 0.202 to 0.450. Hence, a traditional
significance test yields p o 0.001. The 90% CI ranges
from 0.224 to 0.432, and therefore, in TOST equivalence
testing, H0.1: r o −0.3 can rejected (p o 0.001) but
H0.2: r 4 0.3 cannot be rejected (p ¼ 0.690). Bayesian
hypothesis testing yields BF10 ¼ 8153.056 or ‘decisive’
evidence in favor of H1 vs. H0, and the 95% PI (ranging
from 0.201 to 0.447) almost coincides with the 95% CI.

3.4. Comparing models for the prediction of posttest
performance

Table 4 presents a comparison of the five models
mentioned previously: only the grouping variable
(factor: ‘X’), only previous experience (covariate: ‘C’),
both grouping variable and covariate (‘X, C’), both
grouping variable and covariate as well as their
interaction (‘X, C, XC’), and a model without any of
the aforementioned (‘None’).

Both in terms of BFs (i.e., larger is better) and all
three information criteria (i.e., smaller is better), the
model with only previous experience (i.e., ‘C’) is to be
preferred. Note that we have decided on whether or not
to include terms other than previous experience (i.e.,
grouping variable and perhaps additionally group-by-
experience interaction) without having to engage in
statistical significance testing.

Fig. 2. Scatter plot of posttest score (0-100) by experience (0-100) per group. Software: SPSS 25.

Table 1
Descriptive statistics of posttest score and experience per group.
Software: JASP 0.8.4.

Posttest score (0-100) Experience (0-100)

Variant A Variant B Variant A Variant B

Sample size 100 100 100 100
Mean 42.013 40.597 30.259 30.351
Standard deviation 9.842 10.056 5.362 5.417
Skewness 0.019 −0.111 0.127 0.482
Kurtosis −0.500 −0.351 −0.439 −0.270
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4. Discussion

This paper started with the observations that p-values
have dominated research in education and related fields,
that statistically non-significant p-values are not rarely
used to ‘confirm’ a H0 that states some kind of
equivalence, and that the use of p-values in small
samples comes with additional problems. The alter-
natives to the traditional p-value discussed in this paper
are not immune to issues related to small samples (e.g.,
N ¼ 10) and all methods suffer from the same common
problem: the user. Although a common quote attributed

to Benjamin Disraeli is “Lies, damned lies, and
statistics”, a more appropriate way of summarizing
statistics and the way they are used is probably “Lies,
damned lies, but not statistics.” As long as methods are
used in a context where they make sense and for the
purposes they are designed for, there is no problem at
all. As long as researchers interpret the p-value as it is
and refrain from using it for purposes it was not
designed for, there is no problem. The problem occurs
when we start to use methods inappropriately or in
essence correctly but for the wrong questions.

Like any method, statistical methods only make sense
in a particular context. Numbers, in isolation, say nothing,
and outcomes of statistical testing, without presentation of
descriptive statistics and/or graphical presentation thereof,
tell nothing. Methods only make sense when they are
used appropriately and for the purposes and kind of
questions they have been designed for. Therefore,
PASTE recommends three basic principles:

1. Describe and plot: with a clear descriptive and
graphical presentation of key statistics we generally
provide a much more meaningful picture to our
audience than by just reporting outcomes of
statistical testing.

2. Equivalence testing and interval estimation: when
we engage in statistical significance testing, we
should not rely solely on traditional p-values but
report CIs and the outcomes of TOST equivalence
testing as well.

3. Model comparison: when our interest lies in
comparing two or more statistical models – which
represent two or more (sets of) hypotheses –
information criteria and Bayesian hypothesis testing
provide useful alternatives to statistical significance
testing.

Table 4
Comparison of five models. Software: JASP 0.8.4 (R2, Bayesian),
Mplus 8 (information criteria).

In model X C X, C X, C, XC None

R2 0.005 0.110 0.116 0.116 0.000
adjusted R2 o 0.001 0.106 0.107 0.102 0.000
Bayes
factora

0.247 8983.093 2832.186 629.420 1.000

AICb 1490.587 1468.285 1469.044 1471.024 1489.608
BICb 1500.482 1478.180 1482.237 1487.515 1496.205
Adjusted
BICc

1490.978 1468.676 1469.565 1471.675 1489.869

aLarger ¼ more in favor (a priori: all models equally likely).
bSmaller ¼ better.
cSample-size adjusted; smaller ¼ better.

Table 2
Tests for group differences in posttest score and experience. Software:
JASP 0.8.4 (classical, Bayesian), JAMOVI 0.8.1.5 (equivalence).

Posttest Experience

Cohen's d Estimatea 0.142 −0.017
Confidence 95% Lower −0.135 −0.294

95% Upper 0.420 0.260
90% Lower −0.091 −0.250
90% Upper 0.375 0.216

Classical H0: d ¼ 0 0.315 0.904
Equivalence H0.1: d o −0.3 0.001 0.023

H0.2: d 4 0.3 0.133 0.013

Bayesianb H1: d≠0 vs. H0: d ¼ 0 0.247 0.155
Posteriorc 95% Lower −0.132 −0.279

95% Upper 0.398 0.251

aPositive difference is in favor of variant A.
bBayes factor for H1 vs. H0.
cPrior: default (Cauchy with location 0 and scale 0.707).

Table 3
On the correlation between posttest score and experience. Software:
JASP 0.8.4 (classical, Bayesian), JAMOVI 0.8.1.5 (equivalence).

Pearson's r Estimate 0.332
Confidence 95% Lower 0.202

95% Upper 0.450
90% Lower 0.224
90% Upper 0.432

Classical H0: r ¼ 0 o 0.001
Equivalence H0.1: r o −0.3 o 0.001

H0.2: r 4 0.3 0.690

Bayesiana H1: r≠0 vs. H0: r ¼ 0 8153.056
Posteriorb 95% Lower 0.201

95% Upper 0.447

aBayes factor for H1 vs. H0.
bPrior: default (Uniform).
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Each of these three principles is discussed in the
following.

4.1. PASTE (1): describe and plot

A descriptive and/or graphical check usually provides
us with a much more meaningful picture than outcomes
of statistical testing in absence of that descriptive and/or
graphical check. Researchers commonly check assump-
tions like Normality and equality of variances by using a
statistical significance test. Using a statistically non-
significant p-value as evidence in favor of our assump-
tion of Normality or equal variance – or any assumption
for that matter – we are back to our fallacy of using a
p-value to ‘confirm’ the null. Moreover, while such tests
may fail to reach statistical significance despite a
substantial deviation from our assumption of Normality
or equal variance when applied to small samples, they
may yield statistically significant outcomes for practi-
cally possibly meaningless deviations when used in large
samples. Using graphs (e.g., Figs. 1 and 2) and
descriptive statistics (e.g., Table 1) provides a much
more practical approach to assessing assumptions than
some statistical testing outcomes. The same holds for
group differences on aspects of interest, such as average
performance and previous experience. If we report only
descriptive statistics (e.g., Table 1) a reader can compute
the outcomes of a statistical test using these descriptive
statistics; the other way around (e.g., trying to calculate
the descriptive statistics and hence actual difference from
a statement like ‘p o 0.001’) does not really work.

When we deal with two equally large samples like
the ones compared in this paper that have more or less
the same standard deviations on the variables of interest
(here: posttest performance and previous experience),
assuming equal standard deviations seems fair and
accounting for unequal standard deviations would result
in almost identical testing and estimation outcomes. In
studies where the groups differ substantially in their
standard deviations (e.g., one group has a standard
deviation about twice as large as the other group),
accounting for unequal variances may yield somewhat
different results compared to assuming equal variances
and accounting for unequal variances is probably to be
preferred. When in doubt, reporting both (i.e., with and
without accounting for unequal standard deviations) –
along with the actual means and standard deviations –
is always an option.

When samples are very small, it becomes very hard
to engage in a meaningful check of assumptions. For
instance, even if two populations of interest have the
same standard deviation (or in squared form, the same

variance), drawing a small random sample from each of
these populations may yield sample standard deviations
that differ substantially from one another. The other
way around is of course also possible: population
standard deviations may differ substantially, yet a study
in which a small random sample is drawn from each
population results in approximately equal standard
deviations. Keeping other factors constant, the devia-
tion between sample statistic and population parameter
tends to decrease with increasing sample size, and the
same holds for the difference in a statistic from sample
to sample.

Whether we need to engage in statistical testing when
dealing with very large samples partly depends on the
complexity of the statistical models to be compared;
more complex models generally require larger samples.
When interested in a fairly simple comparison in terms
of average performance, such as in the example
discussed in this paper, testing at α ¼ 0.05 yields a
statistical power of 0.8 for d ¼ 0.3 with two samples of
n ¼ 176 each (i.e., total N ¼ 352), a statistical power
of 0.8 for d ¼ 0.2 with two samples of n ¼ 394 each
(i.e., total N ¼ 788) and a statistical power of 0.8 for d
¼ 0.1 with two samples of n ¼ 1571 each (i.e., total N
¼ 3142). Eventually, even very small differences in
average performance observed in the sample may result
in H0: d ¼ 0 being rejected, but descriptive statistics
will indicate whether we are dealing with a practically
meaningful difference.

4.2. PASTE (2): equivalence testing and interval
estimation

When we engage in statistical significance testing, we
should not rely only on traditional p-values that reject
some H0 of equivalence but report CIs and the outcomes
of TOST equivalence testing as well. Regardless of the
p-value, CIs provide us with intervals around our
statistics of interest. Keeping other factors constant, the
smaller the samples the wider the CIs and the more
findings can be expected to vary from sample to sample.
If a p-value obtained from a test of a H0 of equivalence is
statistically significant, CIs and the outcomes of TOST
equivalence testing can provide useful information with
regard to the practical significance of a difference,
relation or effect of interest. In very large samples, or in a
meta-analysis on a large series of studies,15 the p-value
associated with H0: d ¼ 0 may be statistically significant
at α ¼ 0.05, but the 90% CI for d may range from 0.05
to 0.25 meaning that it overlaps with neither the lower
bound (H0.1: d o −0.3, p 4 0.05) nor the upper bound
(H0.2: d 4 0.3, p 4 0.05) of TOST equivalence testing
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and hence the practical implications of the difference
under study may be limited. At the same time, the
current paper provides an example of how even in a
study that compares two samples of n ¼ 100 each a
traditional significance test may yield a statistically non-
significant p-value (i.e., for posttest performance: p ¼
0.315) but TOST equivalence testing fails to provide
evidence in favor
of equivalence as well (i.e., the upper bound of the
90% CI of 0.375 exceeds 0.3, and hence the p-value
associated with H0.2: d 4 0.3 is larger than 0.05,
here 0.133).

4.3. PASTE (3): model comparison

TOST equivalence testing, through p-values asso-
ciated with H0.1 and H0.2 and/or through CIs, provides
researchers with a means to reflect on questions with
regard to whether we should consider two treatments or
two groups as meaningfully different or more or less
equivalent. Bayesian hypothesis testing also provides a
useful approach for that kind of questions, and 95% PIs
provide a useful alternative to 95% CIs, although with
the kind of prior distributions used in this paper and/or
sample sizes like the one in the example study or larger
95% PIs and 95% CIs for a mean difference or for a
correlation may well be very similar.

Whenever multiple competing models can be
compared, such as in the case of two-way factorial
designs or the example study in this paper with one
grouping variable and a covariate, Bayesian hypothesis
testing and information criteria can help researchers to
reflect on which model we may prefer without having
to engage in statistical significance testing. This way,
we may decide to drop an interaction term from the
model (e.g., to perform ANCOVA, which assumes no
interaction between grouping variable and covariate)
without having to engage in the erroneous reasoning of
using a statistically non-significant p-value as evidence
in favor of H0 of no interaction.

4.4. To conclude: PASTE as an alternative to
traditional p-values

In a nutshell, PASTE states that all of the alternatives
to p-values discussed in this paper are better than
p-values, that CIs and PIs may both provide useful
interval estimates, and that Bayesian hypothesis testing
and information criteria should be used when the
comparison of multiple models is concerned. Given that
TOST equivalence testing and CIs, Bayesian hypoth-
esis testing and PIs as well as information criteria such

as the ones discussed in this paper are readily available
in more than one statistical software package, the times
that we need to rely on p-values associated with H0s of
no difference have passed. And given the advantages
that these alternatives have to traditional p-values, we
may as well stop using traditional p-values altogether.
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